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Abstract—For more than five decades, remote sensing imagery
has been providing critical information for many applications
such as crop monitoring, disaster assessment, and urban plan-
ning. Unfortunately, more than 50% of optical remote sensing
images are contaminated by clouds severely affecting the object
identification. However, thanks to recent advances in remote sens-
ing instruments and increase in number of operational satellites,
we now have petabytes of multi-sensor observations covering the
globe. Historically cloud imputation techniques were designed
for single sensor images, thus existing benchmarks were mostly
limited to single sensor images, which precludes design and
validation of cloud imputation techniques on multi-sensor data.
In this paper, we introduce a new benchmark data set consisting
of images from two widely used and publicly available satellite
images, Landsat-8 and Sentinel-2, and a new multi-stream deep
residual network (MDRN). This newly introduced benchmark
dataset fills an important gap in the existing benchmark datasets,
which allows exploitation of multi-resolution spectral information
from the cloud-free regions of temporally nearby images, and
the MDRN algorithm addresses imputation using the multi-
resolution data. Both quantitative and qualitative experiments
shows that the utility of our benchmark dataset and as well
as efficacy of our MDRN architecture in cloud imputation. The
MDRN outperforms the closest competing method by 14.1%.

Index Terms—Remote sensing, Cloud imputation, Benchmark,
Multi-resolution, Deep learning

I. INTRODUCTION

Remote sensing imagery became a contributory research
material since the 1950’s until today. Many areas such as
agricultural monitoring, urban planning, earth science, and
climate change research rely on remote sensing data. However,
cloud cover could be a serious problem for the application of
remote sensing imagery in these areas and making the applied
machine learning methods performed poorly in tasks such
as prediction, segmentation, and recognition. Fortunately, the
spatial and temporal density of multi-sensor image collections
have significantly increased in recent years thus providing the
possibility for improving machine learning performance with
cloud imputation.
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A large number of both cloud imputation techniques and
benchmark datasets have been developed in recent years [1]–
[9]. However, most of these benchmarks only include images
from a single sensor and train the proposed methods with
single-sensor images for cloud imputation. The practical use
and performance of single-sensor methods are limited since
cloud-free images from a single sensor collection could be
temporally distant from each other. Hence, there are significant
amount of effect-less and disturbing information in single-
sensor data and it could be more difficult and confusing for
models to learn the real pattern from cloud-free images. In
such cases, multi-sensor imagery becomes an obvious option
for improving cloud imputation performance.

However, the diversity of spatial and spectral resolutions
presented a challenge when dealing with multiple sensor
collections. The diversity of resolutions could make ex-
ploiting information hard although diverse image collections
provided better opportunities for improving cloud imputa-
tion performances. Some recent works tried to utilize multi-
sensor imagery for imputing cloud-contaminated areas and
correspondingly introduced multi-sensor benchmarks [10]–
[16]. But they did not explicitly address the multi-resolution
issue that arises in multi-sensor imagery collections. Instead,
they only artificially down-sampled the high-resolution images
to match lowest resolution images in the collection. As a
result, the spatial and spectral information contained in remote
sensing images cannot be fully exploited after artificial down-
sampling. Thus, the cloud imputation performance could be
compromised.

Therefore, in this paper, we introduce a new remote sensing
benchmark dataset for the multi-resolution cloud imputation
task to fill an important gap in the existing benchmark
datasets. The new benchmark dataset consists of Landsat-
8 (30m resolution) and Sentinel-2 (10m resolution) images.
With this new benchmark dataset, the spectral information
in cloudy regions can be inferred with geo-registered tem-
porally nearby multi-resolution cloud-free images from either
Landsat-8 or Sentinel-2. The temporal gaps between nearest
cloud-free images could be smaller with denser images from



multi-sensor collections. However, the ground truth under real
clouds cannot be evaluated. Thus, real-world cloud patterns
from the EarthNet dataset [6] are superimposed to cloud-
free images for simulating real cloudy images and evaluating
the cloud imputation performance. Additionally, a novel deep
learning based imputation technique is proposed for inferring
spectral values under the clouds using nearby multi-resolution
imagery. The proposed multi-stream deep residual network
(MDRN) exploits multi-resolution spectral information from
the cloud-free regions of corresponding temporally nearby
images. A multi-stream-fusion structure with two-phase losses
is proposed to address the multi-resolution inputs and fuse
them for exploiting useful information to restore the cloud-
contaminated regions. Besides, a composite upsampling struc-
ture is proposed for better incorporating and exploiting the
spectral information in low-resolution inputs.
Contributions: Overall, the contributions of this paper are
two-fold. First, we developed a new cloud imputation bench-
mark dataset drawn from two widely used satellite image
collections (Landsat-8 and Sentinel-2). This benchmark dataset
is tailored for training and testing multi-resolution based cloud
imputation algorithms. The benchmark offers sufficient cover-
age (over three geographically different cities) and variation
(size and shape) by introducing a wide variety of cloud
masks. Second, a multi-stream deep residual network (MDRN)
architecture is proposed for imputing cloud-contaminated re-
gions using the new benchmark dataset. We have conducted
extensive experiments and compared MDRN against several
state-of-the-art deep learning architectures.

II. RELATED WORK

A. Remote sensing benchmarks

Single-image or single-resolution remote sensing bench-
marks have been introduced in several recent works [2], [3],
[6]–[9]. [2], [3] considered single-image data for training and
evaluating the model performance on the cloud imputation
task. The tasks of object detection and scene classification
were considered in [8], [9]. However, benchmarks for object
detection and scene classification lacks the temporal relation-
ship between images and thus cannot be applied to the cloud
imputation task. A multi-image yet single-resolution bench-
mark named EarthNet was proposed in [6] for forecasting
climate impacts. EarthNet collected Sentinel-2 imagery in 10m
resolution and tiled it to 128×128 patches for cloud imputa-
tion problems. The geo-registered patches were organized as
data cubes by temporal order. The time step between each
patch is fixed as all data were from a single remote sensing
imagery collection. While EarthNet provided stable and well-
formulated data series, it is possible that a data cube contains
too many cloudy images and any two cloud-free images
could be temporally distant from each other. Hence, there are
significant amount of effect-less and disturbing information in
the data and it could be more difficult and confusing for the
model to learn the real pattern from cloud-free images.

In contrast, multi-sensor remote sensing benchmarks were
introduced in [11], [15], [16]. Although the multi-sensor image

pairs were used for addressing cloud imputation and land cover
classification tasks, they did not explicitly address the multi-
resolution issue or fully exploit the information contained by
multi-sensor data. Instead, the high-resolution data in these
benchmarks were artificially down-sampled for processing
jointly with the low-resolution data. Such processing could
limit the capacity of the information contained in the bench-
marks while being applied to the cloud imputation task and
could lead to suboptimal performance. Hence in this paper,
we introduce a new remote sensing benchmark dataset to fill
the gap for the multi-resolution cloud imputation task. The
original resolution of data from every sensor collection was
preserved in our benchmark for fully exploiting the unique
spatial and spectral information contained and improving the
cloud imputation performance.

B. Cloud imputation methods

Besides the benchmark, the remote sensing cloud imputation
methods has also been primarily considered in single-sensor
setting previously in [1]–[4]. [2] employed a GAN architecture
with contextual attention mechanism proposed by [17] for
restoring cloud-contaminated sea surface temperature images.
[3] proposed a spatial-temporal-spectral (STS) convolution
network with multi-scale features for predicting missing areas
in remote sensing images. Although these works made signif-
icant improvements on cloud imputation tasks, single-sensor,
single-image setting can only provide limited information and
be adopted to limited practical situations compared to multi-
sensor, multi-image setting.

Some recent works have considered multi-sensor imagery
in the area of remote sensing. Particularly, cloud imputation
with multi-sensor data were experimented in [10]–[14], [18].
[10]–[12], [14] used optical and SAR channels for cloud
imputation tasks. The SAR sensor could penetrate clouds and
always provide high-resolution cloud-free images. Particularly,
MSOPunet proposed by [14] employed a similar tri-stream
structure to us to encode the optical and SAR images sep-
arately. However, the three encoder streams in MSOPunet

shared the same weight values whereas our proposed multi-
stream structure with three independent streams could exploit
multi-sensor inputs more efficiently. Besides, they did not
explicitly address the multi-resolution issue between SAR and
optical images but artificially down-sampled the SAR images
to the lower resolution as optical images instead. There is
loss of information caused by artificial down-sampling in their
processing compared to the original multi-resolution data.

The multi-resolution issue in remote sensing imagery was
considered while addressing other problems such as land cover
classification and segmentation in [19]–[26]. A deep learning
fusion model, Multi3Net, for multi-resolution remote sensing
imagery was proposed in [19] for image segmentation. The
contextual information of each resolution of images were
extracted with a Pyramid Scene Parsing (PSP) module [27].
While performing our cloud imputation task, Multi3Net could
restore the rough and overall contextual information well.
However, comparing to the ground truth and our proposed



model’s predictions, Multi3Net’s predictions could be incon-
sistent to the cloud-free background due to the massive pooling
performed in PSP modules.

Fig. 1. The illustration of the data setting in multi-resolution cloud imputation
task. The cloud-free Landsat-8 image (low resolution) is denoted as XCF

1 ,
the cloud-masked target Sentinel-2 image (high resolution) is denoted as XC

2 ,
the cloud-free Sentinel-2 image (high resolution) is denoted as XCF

3 , and the
cloud-free target Sentinel-2 image (high resolution) is denoted as Y CF

2 .

III. BENCHMARK

In this section, we introduce the data benchmark we use
for training and testing our proposed model and compare it
with existing benchmarks that have been used in similar cloud
imputation tasks before.

A. Satellite collections

The remote sensing data products we used are from two
satellite collections, Landsat-8 and Sentinel-2.

1) Landsat-8:: Equipped with Operational Land Imager
(OLI) sensor and Thermal Infrared Sensor1. Provides 11
bands, 8 bands at 30m, 1 band at 15m, and 2 bands at
100m spatial resolution. Revisits the same area every 16 days.
The Landsat-8 data is from the Level-1 product that can be
rescaled to top-of-atmosphere reflectance product. In the cloud
imputation task, we use its RGB bands with 30m resolution.

2) Sentinel-2:: Equipped with Multispectral Imager
(MSI)2. Provides 13 bands, 4 bands at 10m, 6 bands at 20m,
3 bands at 60m spatial resolution. Revisits the same area every
10 days. Currently comprises two identical polar-orbiting
satellites in the same orbit, phased at 180 degrees to each
other, thus the closest possible time difference between two
images is 5 days. The Sentinel-2 data is from the Level-1C
top-of-atmosphere reflectance product and has values in the
range of [0, 10,000]. In the cloud imputation task, we use its
RGB bands with 10m resolution.

B. Multi-resolution benchmark

In this paper, we propose a new benchmark to allow deep
learning models to exploit the information in multi-resolution
remote sensing imagery collections and achieve better cloud
imputation performance.

As noted above in III-A, both widely used satellite collec-
tions, Landsat-8 and Sentinel-2, have their independent fixed
revisiting frequencies and spatial resolutions. This frequency
difference provides us with possibly close remote sensing

1https://landsat.gsfc.nasa.gov/satellites/landsat-8/
2https://sentinel.esa.int/web/sentinel/missions/sentinel-2

images for any given spatial extents. Images with smaller
temporal gaps could be obtained with multi-sensor collections.
For example, the closest possible time difference between two
Sentinel-2 images is 5 days. But it is possible that a Landsat-8
image is 2 days away from a Sentinel-2 image since the two
satellite collections are independent from each other. In this
case, temporally closer cloud-free images could be available
from Landsat-8 for any cloudy Sentinel-2 image. In the mean-
time, more spectrally close information could still be provided
by images from the same sensor collection. Therefore, the
cloud imputation performance on cloudy Sentinel-2 images
could be improved with cloud-free images from both Sentinel-
2 and Landsat-8.

More specifically, the cloud imputation benchmark dataset
introduced in this paper consists of multi-resolution image
triplets from both Landsat-8 and Sentinel-2 with the smallest
temporal gap between images similar to [5]. Considering
Sentinel-2 has higher resolution, the target image for cloud
imputation task is set as Sentinel-2 images. The temporally
closest cloud-free Landsat-8 image and another temporally
closest cloud-free Sentinel-2 image covering the same spatial
extents are searched and extracted as informative inputs with
the extended STAC proposed by [28]. Then the remote sensing
images covering a large area are tiled into small 384 × 384
pixel patches for Sentinel-2 and 128 × 128 pixel patches
for Landsat-8 without overlapping for the ingestion into
deep learning models. Furthermore, the same cloud detection
method as [11] and Google Earth Engine3 is employed for
cloud coverage filtering. Each patch with less than 10% of
cloud coverage is considered as cloud-free and could be used
for training and evaluating cloud imputation models. In total,
5003 cloud-free triplets are obtained in our benchmark dataset.

Fig. 1 shows the data setting of our experiments. Let XCF
1

(CF stands for cloud-free) denote the cloud-free Landsat-8
patch, Y CF

2 denote the target cloud-free Sentinel-2 patch,
and XCF

3 denote the cloud-free Sentinel-2 patch. For training
and evaluating purposes, Y CF

2 is artificially cloud-masked by
random real cloud masks from the EarthNet dataset [6]. The
cloud-masked Y CF

2 is denoted as XC
2 (C stands for cloudy)

and is used as an input patch. Therefore, the multi-resolution
cloud imputation task would be to get a mapping such that:

G(XCF
1 , XC

2 , XCF
3 ,M) :→ Y CF

2 (1)

where G(·) is the mapping, that is, the model will be trained
and M is the transplanted cloud mask as extra input.

IV. METHODOLOGY

Given the data and training framework described in Sec-
tion III, we introduce our multi-stream deep residual network
(MDRN) architecture in this section. MDRN is inspired by the
single-resolution cloud imputation network, EDSR [11]. We
propose the multi-stream-fusion structure and the composite
upsampling structure to address multi-resolution tasks. The
newly proposed structures and some other existing components
of MDRN are introduced in detail below.

3https://earthengine.google.com/



Fig. 2. The overall dataflow and network architecture of our proposed method. The inputs are formed by 3 images, XCF
1 , XC

2 , and XCF
3 . The cloud mask

feature M is incorporated to each image as an extra input feature. The three inputs are first processed with three separate streams consisting of a series of
residual blocks. Additionally, the Landsat stream is processed with a composite upsampling structure with the extra information from the Sentinel stream to
increase its resolution and dimension to 10m (384×384). After the separate stream processing, the three images are fused to one vector and processed by a
series of residual blocks and compressed back to a 3-feature RGB image with a 3-filter dilated residual block. Then the predicted output is formed by the
3-feature RGB image along with the long skipped cloudy input. The bottom-right corner shows the basic residual block that formed the network.

TABLE I
THE DETAILED SPECIFICATIONS OF THE ARCHITECTURE. EXCEPT THE COMPOSITE UPSAMPLING STRUCTURE IN THE LANDSAT STREAM, THAT IS, THE

FIRST THREE LAYERS IN LANDSAT STREAM, THE NUMBER OF LAYERS, KERNEL SIZE, AND DILATION RATES OF EACH STREAM ARE ALL EQUAL. THE
VARIABLE i INDICATES THE INCREASING RATE OF DILATED CONVOLUTION LAYERS, i = 1, . . . , 6.

Landsat Stream XCF
1 128*128*3 Cloudy Stream XC

2 384*384*3 Sentinel Stream XCF
3 384*384*3

Deconvolution layer, kernel = 3×3,
output size = 384*384*3
Concatenating with the cloud-free Sentinel-2 features,
output size = 384*384*6
Convolution layer, kernel = 3×3,
output size = 384*384*3
(Residual block, kernel = 3×3) * 3, (Residual block, kernel = 3×3) * 3, (Residual block, kernel = 3×3) * 3,
output size = 384*384*3 output size = 384*384*3 output size = 384*384*3
(Dilated residual block, (Dilated residual block, (Dilated residual block,
kernel = 3×3, dilation = 2i) * 6, kernel = 3×3, dilation = 2i) * 6, kernel = 3×3, dilation = 2i) * 6,
output size = 384*384*3 output size = 384*384*3 output size = 384*384*3
(Residual block, kernel = 3×3) * 3, (Residual block, kernel = 3×3) * 3, (Residual block, kernel = 3×3) * 3,
output size = 384*384*3 output size = 384*384*3 output size = 384*384*3

Concatenation
(Residual block, kernel = 3×3) * 3, output size = 384*384*9

(Dilated residual block, kernel = 3×3, dilation = 2i) * 6, output size = 384*384*3
(Residual block, kernel = 3×3) * 3, output size = 384*384*3

Overall architecture: Fig. 2 shows the overall dataflow
and network architecture of our proposed method, MDRN.
The architecture consists of three panels, 1. input, 2. model
(MDRN), and 3. output. The inputs are formed by 3 images,
XCF

1 , XC
2 , and XCF

3 . Each image contains 3 features, R,
G, and B. The cloud mask feature M is incorporated to each
image as an extra input feature. Then the inputs are transferred
to the model. The output of the model, Ŷ CF

2 is a single RGB
image in the same resolution as Sentinel-2 images. Then Ŷ CF

2

could be quantitatively evaluated and compared with the cloud-
free ground-truth Y CF

2 to verify the performance of the model.

The detailed specifications of the overall architecture are listed
in Table I.

Residual block: The basic component in our model is
a residual block [11] consisting of four layers: convolution
layer, ReLU activation, convolution layer, then a residual
rescaling layer [29]. Besides, a shortcut connection over these
four layers is deployed to overcome performance degradation
possibly caused by the depth of the network [30]. The residual
rescaling layer can stabilize the features in the residual block
by leveraging the features to an appropriate scale [29].



Dilated convolution: Although the residual blocks with
rescaling and shortcut connection can provide stable and well-
converged results, the performance of the model is limited
by the small receptive fields in traditional convolution layers.
Small size of receptive fields can only capture information
from limited number of pixels. Whereas large size of receptive
fields would be a redundancy and heavy burden in sense of
computing. Therefore, we adopt some of the residual blocks
in our network with dilated convolution layers [31] in place of
the traditional convolution layers. The dilated receptive fields
could efficiently capture information from distant pixels to
learn the macro pattern well without tremendously increasing
the number of parameters in the convolution layer.

Multi-stream-fusion structure: For efficiently exploiting the
unique information in each input image, we propose a new
multi-stream-fusion structure here. With the multi-stream-
fusion structure, the three input images with each concatenated
with cloud mask M are processed with three independent
streams. Each stream consists of 6 residual blocks and 6
dilated residual blocks. The intermediate output features of
each stream are reshaped to the same dimension (384×384×3)
of the ground truth image Y CF

2 . Then the mean square error
(MSE) loss between each stream output, Ŷ ′CF

1 , Ŷ ′CF

2 , Ŷ ′CF

3

and the ground truth image Y CF
2 is computed for evaluating

each stream’s preliminary performance and contributions while
reconstructing the ground truth image,

Loss
Ŷ ′CF

1
= MSE(Ŷ ′CF

1 , Y CF
2 ),

Loss
Ŷ ′CF

2
= MSE(Ŷ ′CF

2 , Y CF
2 ),

Loss
Ŷ ′CF

3
= MSE(Ŷ ′CF

3 , Y CF
2 ).

After the separate processing by three streams, the three
images can be concatenated to one vector as they have the
same resolution (10m) and dimension (384× 384) now. Then
the concatenated vector with 9 features is processed by three
residual blocks first. Then the 9-feature vector is compressed
back to a 3-feature RGB image with a 3-filter dilated residual
block. After that, the 3-feature RGB image is processed
with 5 more dilated residual blocks and 3 residual blocks.
Additionally, a long skip connection is used over the whole
neural network to add the cloudy input XC

2 directly to the final
output. This long skip connection could provide a reference
for the prediction on the given partly-cloudy image and enable
the model to focus on the cloud-masked area [32].

Then the MSE loss LossFusion between the fused restored
image Ŷ CF

2 and the ground truth image Y CF
2 is computed for

evaluating the final performance of the network,

LossŶ CF
2

= MSE(Ŷ CF
2 , Y CF

2 ).

This way, the network is trained and back-propagated by a
tri-stream composite loss,

Loss = LossŶ CF
2

+ λ(Loss
Ŷ ′CF

1
+ Loss

Ŷ ′CF
2

+ Loss
Ŷ ′CF

3
)

(2)

where λ is a hyperparameter controlling the weight of prelim-
inary stream-wise losses.

Composite upsampling structure: As the multi-resolution
cloud imputation problem is tackled here, the Landsat-8 image
XCF

1 with its concatenated cloud mask has lower spatial
resolution than the Sentinel-2 features. Thus we propose a
lightweight composite upsampling structure in MDRN for up-
sampling the Landsat-8 features to the same spatial resolution
and dimensions as the Sentinel-2 features.

The Landsat-8 stream features are first deconvoluted to
384 × 384 for the convenience of further processing. Then a
copy of the cloud-free Sentinel-2 RGB features XCF

3 are con-
catenated to the Landsat-8 stream as they both have the same
dimensions. The concatenated XCF

3 are expected to provide
spatial information for the Landsat stream while XCF

1 could
provide spectral information for the later upsampled features.
After that, a convolution layer is employed for reshaping the
concatenated two-image features to the shape of one-image
features. Then the Landsat-8 stream is preliminarily upsampled
to the same dimensions as the Sentinel-2 stream with unique
information from Landsat-8 represented accurately.

Fig. 3. The validation mean squared error (MSE) curve for our MDRN, and
other competing methods: Multi3Net, EDSR, and MSOPunet. It shows that
our proposed method significantly outperforms the other three state-of-the-art
compared here. MSOPunet is the closest model to MDRN but it tends to
overfit and has increasing MSE. MDRN also out performs EDSR (see the
gap between curves). Multi3Net is oscillating and still not fully converged
after 120 epochs.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present experiments and comparisons
for MDRN and three other closest state-of-art deep learning
models, EDSR [11], Multi3Net [19], and MSOPunet [14] on
our multi-resolution cloud imputation benchmark dataset. Be-
cause EDSR is essentially a single-resolution cloud imputation
model, we add one deterministic interpolation layer for the
low-resolution Landsat input to let the inputs for EDSR have
the same resolution. Multi3Net is a multi-resolution model
for remote sensing image segmentation, we adopted it to
image restoration task by adding a final layer for adjusting
the output dimensions while the inputs stay the same as our
proposed model. MSOPunet is the most comparable model
experimented here since MSOPunet is a recent multi-sensor



cloud imputation model as MDRN. However, MSOPunet did
not explicitly address the multi-resolution issue. So we have to
add one deterministic interpolation layer for the low-resolution
Landsat input to let the inputs have the same resolution.

Environmental settings: All the experiments are performed
on a TITAN RTX GPU with 24GB memory. Our training
and validations are implemented with the PyTorch framework.
The benchmark dataset is split to a training set with 4,003
triplets and a validation set with 1,000 triplets. All the models
are trained with batch-size as 16, 120 epochs, mean squared
error (MSE) loss, ADAM optimizer, and a step learning rate
scheduler starting from 0.01 and every 10 epochs decrease by
the rate of 0.75.

A. Quantitative metrics

All the models compared here are trained with a simple
MSE loss on the patch. Fig. 3 shows the validation MSE
loss curve of each model after each epoch. Our proposed
model, MDRN, consistently has the lowest loss curve among
all the models compared. MSOPunet is the closest model
to MDRN but it tends to overfit and has increasing MSE.
EDSR is outperformed by MDRN by an obvious gap even
though it converged. Multi3Net is oscillating and still not
fully converged after 120 epochs. Additionally, we report other
quantitative pixel-wise and structural metrics on the validation
set. For pixel-wise metrics, we present MSE of the entire patch
and MSE of only the cloudy area for evaluating the overall
restoring quality, peak signal-to-noise ratio (PSNR) [33] for
an approximation to human perception of the restored image,
and the spectral angle mapper (SAM) [34] for showing the
spectral (RGB) angle between the target pixel and the restored
pixel. For structural metrics, we show structural similarity
index (SSIM) [35] for measuring the image reconstruction
quality from a visual perception standpoint. Table. II shows
the comparison between MDRN and the state-of-art models
on the metrics listed above. Specifically for cloudy MSE,
the percentage reduction of MDRN compared to each of the
state-of-the-art methods is presented. MDRN outperforms the
state-of-the-art methods on most of both the pixel-wise and
structural metrics only except for SAM. Compared to the
most comparable model, MSOPunet, MDRN outperforms it
on cloudy MSE, the most important metric for the cloud
imputation task, by 14.1%.

B. Qualitative verification

Fig. 4 shows a few restored results and their residual maps
for qualitatively verifying the performance of the models
with various types of cloud coverage from scattered to major
blocks. The darker the residual map, the closer the correspond-
ing restored image is to the ground truth. We also showed
multiple types of land cover that need imputing: city, suburban
farms, grasslands, and mountains. MDRN outperformed the
other compared methods on all the land cover types shown in
Fig. 4. The promising performance that the proposed model
has could lead to various impactful applications such as crop
monitoring, building recognition, and wildfire detection.

VI. ABLATION STUDIES

In this section, we show the results of an ablation study
to verify the contributions of the newly proposed components
in MDRN, multi-stream-fusion structure, the composite up-
sampling mechanism. Two simplified models, each without
one component noted above, are trained and validated on the
same settings as the complete proposed model.

Additionally, the influence of our proposed multi-resolution
benchmark is also evaluated with an experiment on a simpli-
fied dataset. The proposed model is trained and validated on
the same dataset only except that the low-resolution cloud-free
inputs from Landsat-8 are removed.

No multi-stream-fusion: For testing the contributions of
the multi-stream-fusion structure in our proposed model, a
simplified model without the multi-stream-fusion structure is
experimented. The composite upsampling structure is pre-
served for a fair comparison. The Landsat-8 features are
upsampled first with the extra information from the Sentinel-2
features. Then the three inputs are concatenated as they have
the same resolution and dimension. The concatenated inputs
are processed with the same depth of residual blocks as the full
model. The two-phase stream and fusion loss is also replaced
with one single MSE loss at the end of the network since it is
part of the multi-stream-fusion structure and the stream losses
are dependent to the separate streams.

No composite upsampling: For testing the contributions of
the composite upsampling structure in our proposed model, a
simplified model with the composite upsampling structure is
replaced by a single interpolation layer is experimented. The
multi-stream-fusion structure is preserved for a fair compar-
ison. Then the three stream of features are fused as in the
complete model.

No Landsat-8 image: For evaluating the influence of in-
cluding a temporally closest low-resolution Landsat-8 image in
the cloud imputation problem, a full MDRN model is trained
and validated on the same dataset only except that the low-
resolution cloud-free inputs from Landsat-8 are removed. The
target cloud-masked Sentinel-2 image and neighboring cloud-
free Sentinel-2 image stay unchanged as input image pairs
for a fair comparison. Our proposed model, MDRN, only the
Landsat Stream removed, is trained and validated on the ablate
dataset for showing the influence brought by the Landsat-8
input.

Fig. 5 and Table III show the quantitative metrics for the
ablation study with our complete proposed method, without
multi-stream-fusion structure, without composite upsampling
structure, and without Landsat-8 input, respectively. The full
MDRN model significantly outperforms the simplified (various
components removed) framework. The improved performance
suggests that all three components tested here have positive
contributions to the full model. The multi-stream-fusion struc-
ture is the most contributing component among the three tested
here.



TABLE II
THE COMPARISON ON MSE, CLOUDY MSE, PSNR, SSIM, AND SAM FOR MULTI3NET, EDSR, MSOPunet , AND MDRN. SPECIFICALLY FOR CLOUDY
MSE, THE PERCENTAGE REDUCTION OF MDRN COMPARED TO EACH OF THE STATE-OF-THE-ART METHODS IS PRESENTED. THE BEST RESULT OF EACH

METRIC IS BOLDED.

Methods MSE (10−4) Cloudy MSE (10−4) Cloudy MSE reduced by (%) PSNR (dB) SSIM SAM (rad 10−2)
Multi3Net 8.7208 18.6389 25.7456% 35.4146 0.9585 9.1130
EDSR 8.4067 23.7172 41.6449% 39.0115 0.9796 5.1581
MSOPunet 4.8696 16.1064 14.0702% 39.3106 0.9816 5.2328
MDRN 4.5868 13.8402 × 40.1791 0.9826 5.4678

Fig. 4. The comparison of restored RGB images and residual maps. The darker the residual map, the closer the corresponding restored image is to the
ground truth. From the left to the right, (1) the cloud mask; (2) the ground truth; (3)-(6) the restored images by Multi3Net, EDSR, MSOPunet, and MDRN,
respectively. (7)-(10) the residual maps of Multi3Net, EDSR, MSOPunet, and MDRN, respectively. From top to bottom shows various types of land cover,
(a) city; (b) suburban farms; (c) grassland; (d) mountains. We can see obviously from the comparison that MDRN yields the closest restored images to the
ground truths and the darkest residual maps.

TABLE III
THE COMPARISON ON MSE, PSNR, SSIM, AND SAM FOR MDRN, WITHOUT THE MULTI-STREAM-FUSION STRUCTURE, WITHOUT THE COMPOSITE

UP-SAMPLING STRUCTURE, AND WITHOUT THE LOW-RESOLUTION LANDSAT-8 INPUT. SPECIFICALLY FOR CLOUDY MSE, THE PERCENTAGE REDUCTION
OF MDRN COMPARED TO EACH SIMPLIFIED MODEL IS PRESENTED. THE BEST RESULT OF EACH METRIC IS BOLDED.

Methods MSE (10−4) Cloudy MSE Cloudy MSE reduced by (%) PSNR (dB) SSIM SAM (rad 10−2)
No multi-stream-fusion 10.1125 30.5855 54.7491% 34.9582 0.9762 5.0239
No composite upsampling 4.9981 15.8522 12.6922% 37.3975 0.9817 4.8934
No Landsat-8 6.6171 19.1968 27.9036% 39.9644 0.9819 5.0791
Complete 4.5868 13.8402 × 40.1791 0.9826 5.4678

VII. CONCLUSION

In this paper, we introduced a new multi-resolution satellite
image benchmark dataset for cloud imputation. This new
benchmark dataset facilitates the development and thorough
validation of cloud imputation algorithms. We also proposed
the multi-stream deep residual network (MDRN) that exploits
multi-resolution remote sensing images for cloud imputation.
MDRN addressed the multi-resolution issue with two newly-
proposed components: a multi-stream-fusion structure and a
composite upsampling structure. Our experiments showed that
MDRN outperforms other state-of-the-art methods using both
quantitative and qualitative measures. Our full MDRN model
has achieved an improvement of 14.1 to 41.6% cloudy MSE
as compared to various state-of-the-art methods. Currently,

our method addresses only the multi-resolution issue in multi-
sensor cloud imputation problem. In the future, we will work
on addressing the generic spectral heterogeneity among multi-
sensor images.
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